Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ecol Evol ; 13(1): e9709, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36620422

RESUMO

Stable isotope mixing models (SIMMs) are widely used for characterizing wild animal diets. Such models rely upon using accurate trophic discrimination factors (TDFs) to account for the digestion, incorporation, and assimilation of food. Existing methods to calculate TDFs rely on controlled feeding trials that are time-consuming, often impractical for the study taxon, and may not reflect natural variability of TDFs present in wild populations.We present TDFCAM as an alternative approach to estimating TDFs in wild populations, by using high-precision diet estimates from a secondary methodological source-in this case nest cameras-in lieu of controlled feeding trials, and provide a framework for how and when it should be applied.In this study, we evaluate the TDFCAM approach in three datasets gathered on wild raptor nestlings (gyrfalcons Falco rusticolus; peregrine falcons Falco perigrinus; common buzzards Buteo buteo) comprising contemporaneous δ13C & δ15N stable isotope data and high-quality nest camera dietary data. We formulate Bayesian SIMMs (BSIMMs) incorporating TDFs from TDFCAM and analyze their agreement with nest camera data, comparing model performance with those based on other relevant TDFs. Additionally, we perform sensitivity analyses to characterize TDFCAM variability, and identify ecological and physiological factors contributing to that variability in wild populations.Across species and tissue types, BSIMMs incorporating a TDFCAM outperformed any other TDF tested, producing reliable population-level estimates of diet composition. We demonstrate that applying this approach even with a relatively low sample size (n < 10 individuals) produced more accurate estimates of trophic discrimination than a controlled feeding study conducted on the same species. Between-individual variability in TDFCAM estimates for ∆13C & ∆15 N increased with analytical imprecision in the source dietary data (nest cameras) but was also explained by natural variables in the study population (e.g., nestling nutritional/growth status and dietary composition).TDFCAM is an effective method of estimating trophic discrimination in wild animal populations. Here, we use nest cameras as source dietary data, but this approach is applicable to any high-accuracy method of measuring diet, so long as diet can be monitored over an interval contemporaneous with a tissue's isotopic turnover rate.

2.
Ecol Evol ; 12(5): e8877, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35516417

RESUMO

Releasing gamebirds in large numbers for sport shooting may directly or indirectly influence the abundance, distribution and population dynamics of native wildlife. The abundances of generalist predators have been positively associated with the abundance of gamebirds. These relationships have implications for prey populations, with the potential for indirect impacts of gamebird releases on wider biodiversity. To understand the basis of these associations, we investigated variation in territory size, prey provisioning to chicks, and breeding success of common buzzards Buteo buteo, and associations with variation in the abundances of free-roaming gamebirds, primarily pheasants Phasianus colchicus, and of rabbits Oryctolagus cuniculus and field voles Microtus agrestis, as important prey for buzzards. The relative abundance of gamebirds, but not those of rabbits or voles, was weakly but positively correlated with our index of buzzard territory size. Gamebirds were rarely brought to the nest. Rabbits and voles, and not gamebirds, were provisioned to chicks in proportion to their relative abundance. The number of buzzard chicks increased with provisioning rates of rabbits, in terms of both provisioning frequency and biomass, but not with provisioning rates for gamebirds or voles. Associations between the abundances of buzzards and gamebirds may not be a consequence of the greater availability of gamebirds as prey during the buzzard breeding season. Instead, the association may arise either from habitat or predator management leading to higher densities of alternative prey (in this instance, rabbits), or from greater availability of gamebirds as prey or carrion during the autumn and winter shooting season. The interactions between gamebird releases and associated practices of predator control and shooting itself require better understanding to more effectively intervene in any one aspect of this complex social-ecological system.

3.
Curr Biol ; 32(4): 775-782.e4, 2022 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-34910949

RESUMO

Exploitation of natural resources is a driver of human infectious disease emergence. The emergence of animal reservoirs of Guinea worm Dracunculus medinensis, particularly in domestic dogs Canis familiaris, has become the major impediment to global eradication of this human disease. 93% of all Guinea worms detected worldwide in 2020 were in dogs in Chad. Novel, non-classical pathways for transmission of Guinea worm in dogs, involving consumption of fish, have been hypothesized to support the maintenance of this animal reservoir. We quantified and analyzed variation in Guinea worm emergence in dogs in Chad, across three climatic seasons, in multiple villages and districts. We applied forensic stable isotope analyses to quantify dietary variation within and among dogs and GPS tracking to characterize their spatial ecology. At the end of the hot-dry season and beginning of the wet season, when fishing by people is most intensive, Guinea worm emergence rates in dogs were highest, dogs ate most fish, and fish consumption was most closely associated with disease. Consumption of fish by dogs enables a non-classical transmission pathway for Guinea worm in Chad. Seasonal fisheries and the facilitation of dogs eating fish are likely contributing to disease persistence and to this key impediment to human disease eradication. Interrelated natural resource use, climatic variation, companion animal ecology, and human health highlight the indispensability of One Health approaches to the challenges of eradicating Guinea worm and other zoonotic diseases.


Assuntos
Dracunculíase , Dracunculus , Animais , Cães , Dracunculíase/epidemiologia , Dracunculíase/prevenção & controle , Dracunculíase/veterinária , Pesqueiros , Humanos , Estações do Ano , Zoonoses
4.
Ecol Appl ; 31(5): e02328, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33742486

RESUMO

Variation in the spatial ecology of animals influences the transmission of infections and so understanding host behavior can improve the control of diseases. Despite the global distribution of free-ranging domestic dogs Canis familiaris and their role as reservoirs for zoonotic diseases, little is known about the dynamics of their space use. We deployed GPS loggers on owned but free-ranging dogs from six villages in rural Chad, and tracked the movements of 174 individuals in the dry season and 151 in the wet season. We calculated 95% and core home ranges using auto-correlated kernel density estimates (AKDE95 and AKDEcore ), determined the degree to which their movements were predictable, and identified correlates of movement patterns. The median AKDE95 range in the dry season was 0.54 km2 and in the wet season was 0.31 km2 , while the median AKDEcore range in the dry season was 0.08 km2 and in the wet season was 0.04 km2 . Seasonal variation was, in part, related to owner activities; dogs from hunting households had ranges that were five times larger in the dry season. At least 70% of individuals were more predictably "at home" (<50 m from the household) throughout the day in the dry season, 80% of dogs demonstrated periodicity in activity levels (speed), and just over half the dogs exhibited periodicity in location (repeated space use). In the wet season, dogs mostly exhibited 24-h cycles in activity and location, with peaks at midday. In the dry season, dogs exhibited both 12- and 24-h cycles, with either a single peak at midday, or one peak between 06:00 and 12:00 and a second between 18:00 and 22:00. Strategies to control canine-mediated zoonoses can be improved by tailoring operations to the local spatial ecology of free-ranging dogs. Interventions using a door-to-door strategy in rural Chad would best conduct operations during the dry season, when access to dogs around their household more reliably exceeds 70% throughout the day. Given the importance of use in hunting for explaining variation in dog space-use, targeting approaches to disease control at the household level on the basis of owner activities offers potential to improve access to dogs.


Assuntos
Doenças do Cão , África , Animais , Cães , Ecologia , Comportamento de Retorno ao Território Vital , Zoonoses
5.
Sci Total Environ ; 765: 142713, 2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-33077221

RESUMO

The onset of the COVID-19 pandemic brought an unusual decrease in human activity associated with partial and total lockdowns. Simultaneously, a series of wildlife sightings-mainly in urban areas-have been brought to public attention and often attributed to lockdown measures. Here we report on a series of wild carnivore records, including threatened species, obtained through camera traps set in urban forests, campuses, suburbs, and peri-urban areas of two cities in Chile, during partial lockdown measures. Our records are novel for Chile, a country where urban carnivore ecology is mostly unknown, and include the detection of four native carnivores, including the vulnerable güiña (Leopardus guigna) and the endangered southern river otter (Lontra provocax). These records also constitute a valuable baseline collected during partial lockdown measures in two cities of the Global South. We emphasize, however, that these findings cannot be used to argue for or against an effect of lockdown measures on wildlife. More generally, we call for caution in the interpretation of seemingly novel carnivore records during periods of lockdown and stress the value of international collaboration in evaluating the effects of the Anthropause on wildlife.


Assuntos
Animais Selvagens , COVID-19 , Pandemias , Animais , Chile , Cidades , Controle de Doenças Transmissíveis , Humanos , SARS-CoV-2
6.
Transbound Emerg Dis ; 68(2): 531-542, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32615005

RESUMO

The global programme for the eradication of Guinea worm disease, caused by the parasitic nematode Dracunculus medinensis, has been successful in driving down human cases, but infections in non-human animals, particularly domestic dogs (Canis familiaris), now present a major obstacle to further progress. Dog infections have mainly been found in Chad and, to a lesser extent, in Mali and Ethiopia. While humans classically acquire infection by drinking water containing infected copepods, it has been hypothesized that dogs might additionally or alternatively acquire infection via a novel pathway, such as consumption of fish or frogs as possible transport or paratenic hosts. We characterized the ecology of free-ranging dogs living in three villages in Gog woreda, Gambella region, Ethiopia, in April-May 2018. We analysed their exposure to potential sources of Guinea worm infection and investigated risk factors associated with infection histories. The home ranges of 125 dogs and their activity around water sources were described using GPS tracking, and the diets of 119 dogs were described using stable isotope analysis. Unlike in Chad, where Guinea worm infection is most frequent, we found no ecological or behavioural correlates of infection history in dogs in Ethiopia. Unlike in Chad, there was no effect of variation among dogs in their consumption of aquatic vertebrates (fish or frogs) on their infection history, and we found no evidence to support hypotheses for this novel transmission pathway in Ethiopia. Dog owners had apparently increased the frequency of clean water provision to dogs in response to previous infections. Variations in dog ranging behaviour, owner behaviour and the characteristics of natural water bodies all influenced the exposure of dogs to potential sources of infection. This initial study suggests that the classical transmission pathway should be a focus of attention for Guinea worm control in non-human animals in Ethiopia.


Assuntos
Doenças do Cão/transmissão , Dracunculíase/veterinária , Dracunculus/fisiologia , Animais , Doenças do Cão/parasitologia , Cães , Dracunculíase/parasitologia , Dracunculíase/transmissão , Etiópia , Feminino , Humanos , Masculino
7.
PLoS Negl Trop Dis ; 14(4): e0008170, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32310976

RESUMO

Global eradication of human Guinea worm disease (dracunculiasis) has been set back by the emergence of infections in animals, particularly domestic dogs Canis familiaris. The ecology and epidemiology of this reservoir is unknown. We tracked dogs using GPS, inferred diets using stable isotope analysis and analysed correlates of infection in Chad, where numbers of Guinea worm infections are greatest. Dogs had small ranges that varied markedly among villages. Diets consisted largely of human staples and human faeces. A minority of ponds, mostly <200 m from dog-owning households, accounted for most dog exposure to potentially unsafe water. The risk of a dog having had Guinea worm was reduced in dogs living in households providing water for animals but increased with increasing fish consumption by dogs. Provision of safe water might reduce dog exposure to unsafe water, while prioritisation of proactive temephos (Abate) application to the small number of ponds to which dogs have most access is recommended. Fish might have an additional role as transport hosts for Guinea worm, by concentrating copepods infected with worm larvae.


Assuntos
Doenças do Cão/epidemiologia , Doenças do Cão/parasitologia , Dracunculíase/epidemiologia , Dracunculíase/veterinária , Dracunculus/patogenicidade , Ecologia , Animais , Chade/epidemiologia , Dieta , Reservatórios de Doenças/veterinária , Cães , Características da Família , Fezes/parasitologia , Feminino , Peixes , Humanos , Água
8.
PLoS Negl Trop Dis ; 13(7): e0007565, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31306425

RESUMO

Contact patterns strongly influence the dynamics of disease transmission in both human and non-human animal populations. Domestic dogs Canis familiaris are a social species and are a reservoir for several zoonotic infections, yet few studies have empirically determined contact patterns within dog populations. Using high-resolution proximity logging technology, we characterised the contact networks of free-ranging domestic dogs from two settlements (n = 108 dogs, covering >80% of the population in each settlement) in rural Chad. We used these data to simulate the transmission of an infection comparable to rabies and investigated the effects of including observed contact heterogeneities on epidemic outcomes. We found that dog contact networks displayed considerable heterogeneity, particularly in the duration of contacts and that the network had communities that were highly correlated with household membership. Simulations using observed contact networks had smaller epidemic sizes than those that assumed random mixing, demonstrating the unsuitability of homogenous mixing models in predicting epidemic outcomes. When contact heterogeneities were included in simulations, the network position of the individual initially infected had an important effect on epidemic outcomes. The risk of an epidemic occurring was best predicted by the initially infected individual's ranked degree, while epidemic size was best predicted by the individual's ranked eigenvector centrality. For dogs in one settlement, we found that ranked eigenvector centrality was correlated with range size. Our results demonstrate that observed heterogeneities in contacts are important for the prediction of epidemiological outcomes in free-ranging domestic dogs. We show that individuals presenting a higher risk for disease transmission can be identified by their network position and provide evidence that observable traits hold potential for informing targeted disease management strategies.


Assuntos
Doenças do Cão/epidemiologia , Doenças do Cão/transmissão , Modelos Biológicos , Raiva/epidemiologia , Raiva/transmissão , Adolescente , Adulto , Animais , Chade/epidemiologia , Criança , Coleta de Dados , Cães , Processamento Eletrônico de Dados , Epidemias , Feminino , Heterogeneidade Genética , Humanos , Masculino , Raiva/veterinária , Adulto Jovem
9.
Trends Ecol Evol ; 32(7): 518-530, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28529028

RESUMO

As a result of ecological and social drivers, the management of problems caused by wildlife is becoming more selective, often targeting specific animals. Narrowing the sights of management relies upon the ecology of certain 'problem individuals' and their disproportionate contribution to impacts upon human interests. We assess the ecological evidence for problem individuals and confirm that some individuals or classes can be both disproportionately responsible and more likely to reoffend. The benefits of management can sometimes be short-lived, and selective management can affect tolerance of wildlife for better or worse, but, when effectively targeted, selective management can bring benefits by mitigating impact and conflict, often in a more socially acceptable way.


Assuntos
Animais Selvagens , Conservação dos Recursos Naturais , Animais , Ecologia , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...